
An Evaluation of Golomb's Constant 

By W. C. Mitchell 

1. Introduction. Solomon W. Golomb [1] has defined a constant X which is re- 
lated to the limiting properties of random permutations. Let Ly be the expected 
length of the longest cycle of a random permutation of N letters. Define Xy = Lu/N. 
(Thus X1 = 1, X2 = 3/4, X3 = 13/18, X4 = 67/96.) It can be shown that the sequence 
IXy } is monotonically decreasing, and thus a limit X exists. Golomb has calculated 
X = 0.62432965 .. Golomb [2] poses the question of whether X is related to any 
classical mathematical constants. 

Shepp and Lloyd [3], using a different approach, calculated X = 0.62432997 
Their value differs from Golomb's in the seventh and eighth digits. In this paper we 
consider more accurate computations on an IBM 7094, which allows us to calculate 
X to 53-digit accuracy. It is expected that this result will make possible reliable 
comparison of X with any classical mathematical constant. 

2. Computational Formulas. There are two formulas known for X. Golomb [1] 
derives the following: 

R(Y) = 1 forl < Y<2, 

(1) R'(Y) = -IR(Y- 1)/(Y- 1) for2 < Y 

= f 2RY) dY. 
1Y2 

This is equivalent to evaluating the limit of a system of two first-order differen- 
tial equations. This is complicated by the fact that the mth derivative of R has a 
jump discontinuity at Y = m + 1. Consequently, higher-order derivatives are unde- 
fined at these points. Thus special care must be exercised in using numerical methods 
for solving these equations, particularly Newton-Cotes methods. 

Shepp and Lloyd [3] derived a second formula: 

00 00 e-Y 
(2) X = f exp [-E(x) - x]dx where E(x) = -- . 

3. Computational Methods. For the present computation of X, Golomb's method 
(1) was used. Shepp and Lloyd's method (2) was considered but rejected because it 
requires the evaluation of two power series (E(x) and ez) for each evaluation of the 
integrand. This is not feasible for the multiple-precision methods necessary for this 
paper. For less accuracy the method could be used with Hastings' [4] asymptotic 
formula for E(x), which is accurate to 2 10-8. 

I(Y) was evaluated by expressing it as a multiple-precision power series over 
intervals of the form [X0, Xo + k]. Thus 
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n 
(3) R (Y) = R (Xo + h) = E aiht + O (hn+1). 

i=o 

If Xo* = Xo - 1, then (1) gives 

R'(Y) = R'(Xo + h) =-R(Xo* + h)/(Xo* + h) 

(4) E ai*h_ + O(k +) 
i=O Xo*' O(kh 
n 

= - E bi*hi + o (kn+l) 
i=O 

where 

bo* = x * aO* ^ bi*= (ai* b*_i). b* 
xo* aoxo- 

Thus 

( O + ) ?) E ib +1 + 0(kn) R(Xo+h) = R(Xo) -E ht_ +O(kn+ ) 
i=oi+1 

n (5) = R (Xo) 
+ 

aiht bn*he+1 + O (kn+2) n + 

- aih* +O(kn+?) 
i=O 

where 

n 
ao = R[(Xo-k) + k] + O(kn+') = ai'k 

i=O 

ai = -b*_/i, 

and the ai' are the coefficients for the power series for R((Xo - k) + h). 
Similarly, 

Xo+k R(Y) dY fO+k R'(Y + 1) dY 

0 Y2 
0~x Y 

f Xo?kE bhi + O(kn dh 

(6) k n=O Xo + h 

= f n 
0 i=O 

n 
_ C ki+l 

oi+ 1 

where 

co = bo/Xo, ci = (bi - cii)/Xo. 

If XO is defined as m/10 for integer m and if k = 1/10, then the only multiple- 
precision operations required are addition, subtraction, division by a single-precision 
number, multiplication by 10, and division by powers of 10. This eliminates multiple- 
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precision multipliers and divisors. These are the more difficult multiple-precision 
operations. 

The discontinuous derivatives are no problem because the intervals [m/10, m/10 
+ 1/10] contain integers only at the end points. 

4. Results. A calculation of X was made using 65-digit multiple-precision num- 
bers, 52-term power series, and a range of integration from 1 to 33. The accuracy of 
this calculation depends upon each of these three factors. 

The use of finite power series introduces error in three ways. First, there is the 
error resulting from termination of the series. Since the coefficients of each power 
series alternate in sign, this error is less than a52 10-52. Since a52 is positive, this error 
is positive. Second, there is the error in ao resulting from previous truncation errors. 
In this way, the error in each power series propagates to later series. Analysis of 
numerical results shows that the total accumulated error from both these factors is 
less than 2.4 - 10-54. The effect of this error on X is less than 1.2* 10-54. The third way 
in which truncation error enters is in the integration of R'(Y + 1)/ Y. This error is 
roughly 1 - 10-53. However, most of this error occurs in the interval (1, 2). If this 
portion of the error is eliminated by applying a correction so that the integral over 
(1, 2) is exact, then the error is less than 1 - 10-54. This error is also positive, so the 
error in the evaluation of X resulting from the termination of the power series is less 
than 2.2 - 10-54. 

Evaluation of the error induced by using a finite range of integration requires a 
maximizing function. 

Let S(Y) = ln R(Y), then 

(7) St()= R'(Y) __ R(Y -1) <- 1 
( ) ( ) R~~~~R(Y) R (Y) (Y - 1) Y 

because R(Y) > 0 implies R'(Y) < 0 and thus R(Y - 1) > R(Y). 
If s (Yo) = S (Y0) and s'(Y) = -1/ Y then 

(8) S(Y)<s(Y)=S(Yo)+lnYo-lnY for Y0=Y. 

Thus 

R(Y) < r(Y) = es(y) = R(Yo)Yo/Y 

and 

J0 y2 IY2 2Yo 

Several values of R are given in Table 1. Fewer than five digits are given when trun- 
cation error casts doubt on succeeding digits. This evaluation of X was carried out 
over the interval (1, 33). Since R(33) = 1.22 10-54, possible truncation error casts 
doubt on this value. Taking Yo = 32 gives a more reliable result, an error less than 
2.1 . 10-52/2 -32 = 3.3 10-54. However, the error is probably smaller by a factor of 
80. This is derived by defining s'(Y) = -c/Y where c = R(Yo - 1)/R(Yo). This 
ratio appears to decrease with Y, and thus S(Y) < s,(Y). Then 



414 W. C. MITCHELL 

00 R 
_ r (YYdY R R(YO) 

(10) 1 dY < | ( 1dY = )Y 

Since 65 digits were used in multiple-precision numbers, simple analysis of 
computational methods shows that this factor can not produce an error as large as 
the other two factors. As a matter of fact, round-off error is probably less than 
1.10-63. 

Thus we may conclude that 

X = 0.6243299885 4355087099 2936383100 8372441796 4262018052 9286 + E, 

where I El < 5.5 . 10-54. 

TABLE 1 

Y R(Y) 

2 1.00000 
3 0.30685 
4 0.48608 X 10-1 
5 0.49193 X 10-2 
6 0.35472 X 10-3 
7 0.19650 X 10-4 
IS 0.87457 X 10-6 
9 0.32321 X 10-7 

10 0.10162 X 10-1 
11 0.27702 X 10-1? 
12 0.66448 X 10-12 
13 0.14197 X 10-13 
14 0.27292 X 10-15 
15 0.47606 X 10-17 
16 0.75899 X 10-19 
17 0.11129 X 10-20 
18 0.15091 X 10-22 
19 0.19014 X 10-24 
20 0.22354 X 10-26 
21 0.24618 X 10-28 
22 0.25480 X 10-30 
23 0.24864 X 10-32 
24 0.22937 X 10-34 
25 0.20055 X 10-36 
26 0.16658 X 10-38 
27 0.13173 X 10-40 
28 0.99361 X 10-43 
29 0.71621 X 10-45 
30 0.49418 X 10-47 
31 0.3269 X 10-49 
32 0.21 X 10-51 
33 0.1 X 10-53 

By using the smaller error estimate for the finite range of integration, we get 
I El < 3 *10-54. We may then conclude that the 53rd digit of X is 8. The 54th digit is 
in doubt. 

This calculation required seven minutes on an IBMI 7094. 
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